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The functional coefficients of the states in the q-deformed
Knizhnik- Zamalodchikov (qKZ) equation can be represented by
tile structures, and are related to each other by means of a tile
removal process.

Introduction

The operators ei are generators of the two boundary
Temperley-Lieb algebra, which act on paths |α〉. The operators
ai are projectors of the Hecke algebra for 0 ≤ i ≤ N , acting on
functions ψ of x1, . . . , xN .

The qKZ equation is a compatibility condition between the actions
of the ei and the ai. It can be written as

ei|Ψ〉 = −ai|Ψ〉,

where
|Ψ〉 =

∑

α

ψα(x1, x2, . . . , xN)|α〉.

Finding solutions of the qKZ equation involve finding the form
that the ψα take. This task is made easier by finding factorised
expressions of the functions in terms of the Hecke projectors.

LHS OF THE qKZ EQUATION

ei|Ψ〉 =
∑

α

ψα(ei|α〉)

The Operators ei

We can describe the operator ei as a diamond tile dropped at
position i (half tiles for i = 0 and i = N ).

The operators satisfy the relations of the two boundary
Temperley-Lieb algebra:

• The quadratic relations

e2i = −[2]ei, 1 ≤ i ≤ N − 1

e20 = −w1e0,

e2N = −w2eN ,
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where wn =
[ωn]

[ωn+1]
, for parameters ω1, ω2 ∈ C.

• The Yang-Baxter relation

eiei±1ei = ei, 1 ≤ i ≤ N − 1

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

i i+ 1

= �
�
�

�
�
�❅

❅
❅

❅
❅
❅

i

=

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�❅

❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

i− 1 i

• The idempotent relations

I1I2I1 = bI1, I2I1I2 = bI2,

where I1 is a combination of all ei for i odd, and I2 is the
analogue for i even.
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The effect of these relations is that there will never be a collection
of tiles that is piled too high, or that has a tile suspended in mid-air.

The States |α〉

The paths |α〉 are independent states which have the property that,
at each step, the path is either 1 unit higher or 1 unit lower than the
previous step. To illustrate, in N = 2 we have:

0 1 2

The |α〉 can also be expressed as a combination of ei operators. In
theN = 2 case above, the states are |1〉 = e2e1, |2〉 = e1, |3〉 = e0e2e1,
and |4〉 = e0e1, respectively.

The properties of ei mean that the action of one operator can
dramatically change the shape of the path.

RHS OF THE qKZ EQUATION

−ai|Ψ〉 = −
∑

α

(aiψα)|α〉

The Operators ai

The ai satisfy the relations of the Hecke algebra of Type C:

a2i = [2]ai, 1 ≤ i ≤ N − 1

a20 = w1a0

a2N = w2aN

aiai−1ai − ai = ai−1aiai−1 − ai−1, 1 < i ≤ N − 1

a0a1a0a1 − a0a1 = a1a0a1a0 − a1a0

aNaN−1aNaN−1 − aNaN−1 = aN−1aNaN−1aN − aN−1aN .

There is also a set of operators si which satisfy the same relations,
and are defined by

si = [2]− ai, 1 ≤ i ≤ N − 1

s0 = w1 − a0

sN = w2 − aN .

The Functions ψα

The action of the ai (and the si) on the ψα is dictated by the
qKZ equation and the relations described above. It is useful to
set up a tiling representation for the functions identical to the
corresponding |α〉 paths.

SPECIFIC CASE: N = 3

In the case of N=3, we have 8 states:
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|8〉

From the qKZ equation, we get a set of relations which the ψα
satisfy. As an example, we choose i = 1 and have

∑

α

ψα(e1|α〉) = −
∑

α

(a1ψα)|α〉.

Considering the coefficients of |3〉, we get

−a1ψ3|3〉 = ψ1e1|1〉 + ψ2e1|2〉 + ψ3e1|3〉 + ψ5e1|5〉 + ψ7e1|7〉

⇒ s1ψ3 = −w2ψ1 + ψ2 + bψ5 + ψ7.

The relations found using this method make it possible to write the
functions in terms of each other.

Desired Form

In [1], the Type A and Type B systems were each found to have
maximal paths, labelled Ω. Each ψα is able to be expressed as
a combination of operators hi(u) acting on ψΩ. These operators
correspond to the tiles that need to be removed from the picture of
ψΩ in order to get ψα.

For Type B, hi(u) is defined by

h0(u) = s0 −
[
⌊

u
2

⌋

][ω1 +
⌊

u+1

2

⌋

]

[u][ω1 + 1]
, hi(u) = si −

[u− 1]

[u]
, 0 < i < N,

where u is an integer, taking the value of 1 if the tile is in a minima
of the path, and increasing by 1 for each next tile up. If there are
two possible values for u, it takes the larger value.

We represent hi(u) pictorially by

i

uhi(u) =

In the Type C case, there is no maximal path. There are, however,
paths which act like maximal paths for part of the system. These
are the ones with one minimum and no maxima in the bulk. For
N = 3, these paths are α = 5 and 7.

The desired form for each ψα in the Type C system is therefore
ψα = hi(u1)hj(u2) . . . ψβ, where β is one of the psuedo-maximal
states, and

hN(u) = sN −
[
⌊

u
2

⌋

][ω2 +
⌊

u+1

2

⌋

]

[u][ω2 + 1]
.

To get an idea of what these factors should look like, we note that

hi(1) = si, hi(2) = si −
1

[2]
, h0(3) = s0 −

[2]− w1

[2]2 − 1
, etc.

Illustrations of this for β = 7 follow in the next panel. It is hoped,
but not expected, that all of the ψα will follow this form.

Removing Tiles
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1
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It is not complicated to express ψ8, ψ3 and ψ4, as well as ψ6

and ψ2 in terms of ψ7 in the desired form. However it is not so
straightforward to find ψ5 and ψ1 in this form.

Finding expressions for ψ5 in terms of ψ7 is not too hard, however
most of them are far more complicated than we would like. For
instance,

ψ5 =
w1

b(b[2]− w1)

(

s1 −
b[2]2 − 1 + w2[2](1− w1[2])

[2](b− w1w2)

)(

s0 −
[2](b− w1w2)

(1− w2[2])

)

s2

(

s1 −
1

[2]

)(

s0 −
w1 − [2]

1− [2]2

)(

s3 −
b

w1

)

ψ7.

Some of these factors look very strange. In order to find out more
about the unusual factors, we look at when they first appear.

Looking at ψ2 in terms of ψ7, we can see that it follows the
prescription:

ψ2 = s0

(

s1 −
1

[2]

)(

s0 −
[2]− w1

[2]2 − 1

)

s3ψ7.

Taking one more tile to form ψ3, however,
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ψ3 =
w1 + [2](b− w1w2)

b[2](b− w1w2)
(s2)

(

s3 −
b

w1 + [2](b− w1w2)

)

(s0)

(

s1 −
1

[2]

)(

s0 −
[2]− w1

[2]2 − 1

)

ψ7.

A prefactor also appears when finding ψ8 from ψ1:
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ψ8 =
1

b2

(

b

(b− w1w2 + w2[2]− 1)

)

(s3)

(

s2 −
1

[2]

)

(

s1 −
[2]

[2]2 − 1

)(

s3 −
[2]− w1

[2]2 − 1

)

(

s2 −
[2]2 − 1

[2]([2]2 − 2)

)(

s3 −
[2]([2]2 − w2[2]− 1)

[2]4 − 3[2]2 + 1

)

ψ1

It is expected that investigation of these two cases will provide a
better understanding of the form these factors take.

CONCLUSIONS

The Type C qKZ equation coefficients begin to follow the same
pattern as in Types A and B, but the relations soon prove to be
more complicated. Further investigation should reveal the rules
that the coefficients follow, and ultimately lead to a formulation
for the general N case, which will provide a rule for finding any
coefficient given one pseudo-maximal state coefficient.
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